3 \W\@sdZddlmZddlZddlZddlZddlZddlZddgZddZ ddZ ej j Z ej jZejd ejejBZGd ddejZdS) z+Fraction, infinite-precision, real numbers.)DecimalNFractiongcdcCsfddl}|jdtdt|tko0t|knr\|p<|dkrPtj|| Stj||St||S)zCalculate the Greatest Common Divisor of a and b. Unless b==0, the result will have the same sign as b (so that when b is divided by it, the result comes out positive). rNz6fractions.gcd() is deprecated. Use math.gcd() instead.)warningswarnDeprecationWarningtypeintmathr_gcd)abrr!/usr/lib64/python3.6/fractions.pyrs   cCsx|r|||}}qW|S)Nr)r rrrrr sr aC \A\s* # optional whitespace at the start, then (?P[-+]?) # an optional sign, then (?=\d|\.\d) # lookahead for digit or .digit (?P\d*) # numerator (possibly empty) (?: # followed by (?:/(?P\d+))? # an optional denominator | # or (?:\.(?P\d*))? # an optional fractional part (?:E(?P[-+]?\d+))? # and optional exponent ) \s*\Z # and optional whitespace to finish cseZdZdZdSZdTddfdd Zed d Zed d ZdUddZ e ddZ e ddZ ddZ ddZddZddZeeej\ZZddZeeej\ZZdd Zeeej\ZZd!d"Zeeej\ZZ d#d$Z!d%d&Z"d'd(Z#d)d*Z$d+d,Z%d-d.Z&d/d0Z'd1d2Z(d3d4Z)d5d6Z*d7d8Z+d9d:Z,dVd;d<Z-d=d>Z.d?d@Z/dAdBZ0dCdDZ1dEdFZ2dGdHZ3dIdJZ4dKdLZ5dMdNZ6dOdPZ7dQdRZ8Z9S)Wra]This class implements rational numbers. In the two-argument form of the constructor, Fraction(8, 6) will produce a rational number equivalent to 4/3. Both arguments must be Rational. The numerator defaults to 0 and the denominator defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. Fractions can also be constructed from: - numeric strings similar to those accepted by the float constructor (for example, '-2.3' or '1e10') - strings of the form '123/456' - float and Decimal instances - other Rational instances (including integers) _numerator _denominatorrNT) _normalizec sRtt|j|}|dkrdt|tkr6||_d|_|St|tj rV|j |_|j |_|St|t t frx|j\|_|_|St|trZtj|}|dkrtd|t|jdpd}|jd}|rt|}nvd}|jd}|rdt|}||t|}||9}|jd } | rBt| } | d kr4|d| 9}n|d| 9}|jd d krb| }ntd nft|tkot|knrn@t|tj rt|tj r|j |j |j |j }}ntd|d krtd||rBt|tkot|knr(tj||} |d kr2| } n t||} || }|| }||_||_|S)aConstructs a Rational. Takes a string like '3/2' or '1.5', another Rational instance, a numerator/denominator pair, or a float. Examples -------- >>> Fraction(10, -8) Fraction(-5, 4) >>> Fraction(Fraction(1, 7), 5) Fraction(1, 35) >>> Fraction(Fraction(1, 7), Fraction(2, 3)) Fraction(3, 14) >>> Fraction('314') Fraction(314, 1) >>> Fraction('-35/4') Fraction(-35, 4) >>> Fraction('3.1415') # conversion from numeric string Fraction(6283, 2000) >>> Fraction('-47e-2') # string may include a decimal exponent Fraction(-47, 100) >>> Fraction(1.47) # direct construction from float (exact conversion) Fraction(6620291452234629, 4503599627370496) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(Decimal('1.47')) Fraction(147, 100) Nz Invalid literal for Fraction: %rZnum0denomdecimal exprZsign-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))superr__new__r r rr isinstancenumbersRational numerator denominatorfloatras_integer_ratiostr_RATIONAL_FORMATmatch ValueErrorgrouplen TypeErrorZeroDivisionErrorr rr ) clsr r!rselfmrrZscalerg) __class__rrrTsr            $   $   zFraction.__new__cCsDt|tjr||St|ts8td|j|t|jf||jS)zConverts a finite float to a rational number, exactly. Beware that Fraction.from_float(0.3) != Fraction(3, 10). z.%s.from_float() only takes floats, not %r (%s))rrIntegralr"r*__name__r r#)r,frrr from_floats   zFraction.from_floatcCsVddlm}t|tjr&|t|}n$t||sJtd|j|t|jf||j S)zAConverts a finite Decimal instance to a rational number, exactly.r)rz2%s.from_decimal() only takes Decimals, not %r (%s)) rrrrr1r r*r2r r#)r,Zdecrrrr from_decimals   zFraction.from_decimal@Bc Cs|dkrtd|j|kr"t|Sd\}}}}|j|j}}xP||}|||} | |kr\P|||||| f\}}}}||||}}q>W|||} t|| ||| |} t||} t| |t| |kr| S| SdS)aWClosest Fraction to self with denominator at most max_denominator. >>> Fraction('3.141592653589793').limit_denominator(10) Fraction(22, 7) >>> Fraction('3.141592653589793').limit_denominator(100) Fraction(311, 99) >>> Fraction(4321, 8765).limit_denominator(10000) Fraction(4321, 8765) rz$max_denominator should be at least 1rN)rrrr)r'rrrabs) r-Zmax_denominatorZp0Zq0Zp1Zq1ndr Zq2kZbound1Zbound2rrrlimit_denominators&      zFraction.limit_denominatorcCs|jS)N)r)r rrrr szFraction.numeratorcCs|jS)N)r)r rrrr!szFraction.denominatorcCsd|jj|j|jfS)z repr(self)z %s(%s, %s))r0r2rr)r-rrr__repr__szFraction.__repr__cCs(|jdkrt|jSd|j|jfSdS)z str(self)rz%s/%sN)rr$r)r-rrr__str__s  zFraction.__str__csTfdd}djd|_j|_fdd}djd|_j|_||fS)aGenerates forward and reverse operators given a purely-rational operator and a function from the operator module. Use this like: __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) In general, we want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. In Fraction, that means that we define __add__ and __radd__ as: def __add__(self, other): # Both types have numerators/denominator attributes, # so do the operation directly if isinstance(other, (int, Fraction)): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) # float and complex don't have those operations, but we # know about those types, so special case them. elif isinstance(other, float): return float(self) + other elif isinstance(other, complex): return complex(self) + other # Let the other type take over. return NotImplemented def __radd__(self, other): # radd handles more types than add because there's # nothing left to fall back to. if isinstance(other, numbers.Rational): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) return NotImplemented There are 5 different cases for a mixed-type addition on Fraction. I'll refer to all of the above code that doesn't refer to Fraction, float, or complex as "boilerplate". 'r' will be an instance of Fraction, which is a subtype of Rational (r : Fraction <: Rational), and b : B <: Complex. The first three involve 'r + b': 1. If B <: Fraction, int, float, or complex, we handle that specially, and all is well. 2. If Fraction falls back to the boilerplate code, and it were to return a value from __add__, we'd miss the possibility that B defines a more intelligent __radd__, so the boilerplate should return NotImplemented from __add__. In particular, we don't handle Rational here, even though we could get an exact answer, in case the other type wants to do something special. 3. If B <: Fraction, Python tries B.__radd__ before Fraction.__add__. This is ok, because it was implemented with knowledge of Fraction, so it can handle those instances before delegating to Real or Complex. The next two situations describe 'b + r'. We assume that b didn't know about Fraction in its implementation, and that it uses similar boilerplate code: 4. If B <: Rational, then __radd_ converts both to the builtin rational type (hey look, that's us) and proceeds. 5. Otherwise, __radd__ tries to find the nearest common base ABC, and fall back to its builtin type. Since this class doesn't subclass a concrete type, there's no implementation to fall back to, so we need to try as hard as possible to return an actual value, or the user will get a TypeError. csPt|ttfr||St|tr0t||St|trHt||StSdS)N)rr rr"complexNotImplemented)r r)fallback_operatormonomorphic_operatorrrforwardvs   z-Fraction._operator_fallbacks..forward__csZt|tjr||St|tjr4t|t|St|tjrRt|t|StSdS)N)rrrZRealr"Complexr>r?)rr )r@rArrreverses    z-Fraction._operator_fallbacks..reverseZ__r)r2__doc__)rAr@rBrEr)r@rAr_operator_fallbacks&sP  zFraction._operator_fallbackscCs,|j|j}}t|j||j|||S)za + b)r!rr )r rdadbrrr_addsz Fraction._addcCs,|j|j}}t|j||j|||S)za - b)r!rr )r rrHrIrrr_subsz Fraction._subcCst|j|j|j|jS)za * b)rr r!)r rrrr_mulsz Fraction._mulcCst|j|j|j|jS)za / b)rr r!)r rrrr_divs z Fraction._divcCstj||S)za // b)r floor)r rrrr __floordiv__szFraction.__floordiv__cCstj||S)za // b)r rN)rr rrr __rfloordiv__szFraction.__rfloordiv__cCs||}|||S)za % br)r rdivrrr__mod__szFraction.__mod__cCs||}|||S)za % br)rr rQrrr__rmod__szFraction.__rmod__cCst|tjr|jdkr|j}|dkr>t|j||j|ddS|jdkrft|j| |j| ddSt|j | |j | ddSqt|t|Sn t||SdS)za ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational. rrF)rN) rrrr!r rrrr")r rZpowerrrr__pow__s         zFraction.__pow__cCs\|jdkr|jdkr||jSt|tjr b)rmrngt)r rrrr__gt__fszFraction.__gt__cCs|j|tjS)za <= b)rmrnle)r rrrr__le__jszFraction.__le__cCs|j|tjS)za >= b)rmrnge)r rrrr__ge__nszFraction.__ge__cCs |jdkS)za != 0r)r)r rrr__bool__rszFraction.__bool__cCs|jt|ffS)N)r0r$)r-rrr __reduce__xszFraction.__reduce__cCs t|tkr|S|j|j|jS)N)r rr0rr)r-rrr__copy__{s zFraction.__copy__cCs t|tkr|S|j|j|jS)N)r rr0rr)r-memorrr __deepcopy__s zFraction.__deepcopy__)rr)rN)r6)N):r2 __module__ __qualname__rF __slots__r classmethodr4r5r;propertyr r!r<r=rGrJrnadd__add____radd__rKsub__sub____rsub__rLmul__mul____rmul__rMtruediv __truediv__ __rtruediv__rOrPrRrSrTrUrVrWrXrYrZr[r^rerjrmrprrrtrvrwrxryr{ __classcell__rr)r0rr<sVm  7  k )rFrrr rrnresys__all__rr hash_infomodulusrbinfrccompileVERBOSE IGNORECASEr%rrrrrrs